Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(7): e10322, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37484927

RESUMEN

On oceanic islands, strong human impacts on habitats, combined with introductions of exotic species, modify the composition of terrestrial bird assemblages and threaten their ecological functions. In La Réunion, an oceanic island located in the Madagascan region, a national park was established in 2007 to counter the ecosystem-level effects of three centuries of habitat conversion, native species destruction and exotic species introductions. Here, we investigated how bird assemblages were structured in these human-modified landscapes, 10 years before the national park set out its first conservation measures. We used a combination of multivariate statistics and generalized additive models to describe variations in the taxonomic and functional composition and diversity of 372 local bird assemblages, encompassing 20 species, along gradients of habitat composition and configuration. We found that native species were tied to native habitats while exotic species were associated with urban areas and man-modified landscape mosaics, with some overlap at mid-elevations. Species' trophic preferences were segregated along habitat gradients, but ecological traits had an overall weak role in explaining the composition of species assemblages. Hence, at the time of the survey, native and exotic species in La Réunion formed two spatially distinct species assemblages with contrasting ecological trait suites that benefited from antagonistic habitat compositions and dynamics. We conclude that our results support the analysis of historical data sets to establish reference points to monitor human impacts on insular ecosystems.

2.
J Exp Zool A Ecol Integr Physiol ; 339(1): 46-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36052497

RESUMEN

Pest management using attractive and/or repellent semiochemicals is a key alternative to synthetic insecticides. Its implementation requires a good understanding of the intra- and interspecific chemical interactions of arthropod pests, their interactions with their abiotic environment, as well as their evolutionary dynamics. Although mites include many pest species and biocontrol agents of economic importance in agriculture, their chemical ecology is largely understudied compared to insects. We developed a high-throughput ethomics system to analyze these small arthropods and conducted a study on Dermanyssus gallinae, a problematic poultry parasite in the egg industry. Our purpose was to elucidate the role played by host-derived odorants (synthetic kairomone) and conspecific odorants (mite body odors) in D. gallinae. After validating our nanocomputer controlled olfactometric system with volatile semiochemicals of known biological activity, we characterized response traits to kairomonal and/or pheromonal volatile blends in mites from different populations. We were able to accurately characterize the repulsion or attraction behaviors in >1000 individual specimens in a standardized way. Our results confirm the presence of a volatile aggregation pheromone emitted by D. gallinae and bring new elements to the effect of odor source presentation. Our results also confirm the attractive effect on Dermanyssus gallinae of a blend of volatile compounds contained in hen odor, while highlighting a repellent effect at high concentration. Significant interindividual and interpopulation variation was noted particularly in responses to synthetic kairomone. This information lays a valuable foundation for further exploring the emergence risk of resistance to semiochemicals.


Asunto(s)
Artrópodos , Infestaciones por Ácaros , Ácaros , Enfermedades de las Aves de Corral , Animales , Femenino , Ácaros/fisiología , Infestaciones por Ácaros/veterinaria , Pollos/parasitología , Enfermedades de las Aves de Corral/parasitología , Feromonas/farmacología
3.
Proc Biol Sci ; 289(1983): 20221542, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36168758

RESUMEN

Over the course of history, humans have moved crops from their regions of origin to new locations across the world. The social, cultural and economic drivers of these movements have generated differences not only between current distributions of crops and their climatic origins, but also between crop distributions and climate suitability for their production. Although these mismatches are particularly important to inform agricultural strategies on climate change adaptation, they have, to date, not been quantified consistently at the global level. Here, we show that the relationships between the distributions of 12 major food crops and climate suitability for their yields display strong variation globally. After investigating the role of biophysical, socio-economic and historical factors, we report that high-income world regions display a better match between crop distribution and climate suitability. In addition, although crops are farmed predominantly in the same climatic range as their wild progenitors, climate suitability is not necessarily higher there, a pattern that reflects the legacy of domestication history on current crop distribution. Our results reveal how far the global distribution of major crops diverges from their climatic optima and call for greater consideration of the multiple dimensions of the crop socio-ecological niche in climate change adaptive strategies.


Asunto(s)
Cambio Climático , Productos Agrícolas , Agricultura/métodos , Ecosistema , Granjas , Humanos
4.
Anat Rec (Hoboken) ; 305(3): 668-679, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34260154

RESUMEN

For most marine vertebrates, chemical cues provide crucial information during navigation and foraging, but their use by cetaceans is still poorly understood. In contrast to baleen whales, toothed whales (odontocetes) are scarcely equipped for chemoreception: they lack the conventional anatomical structures (i.e., olfactory epithelium, nerves and bulbs) involved in olfaction and have reduced taste buds on the tongue. Several behavioral studies have however shown that captive dolphins can perceive chemical solutions, including odorants, in their oral cavity. To investigate whether odontocetes could use infochemicals in their foraging ecology, we implemented a behavioral response experiment in wild bottlenose dolphins and long-finned pilot whales. We tested dimethyl sulfide (DMS) as a potentially attractive stimulus since it is a chemical signature of highly productive marine areas, known to attract several marine predators including fishes and seabirds. We assessed cetacean responses to DMS exposure by analyzing their movements and surface behaviors recorded by onboard observers. In both species, results did not reveal any significant attraction or behavioral reaction toward DMS when compared to a control chemical stimulus, apart from a short-distance response in bottlenose dolphins. These results suggest that while odontocetes may perceive DMS in water, it apparently does not play a significant role in their foraging ecology. Testing potentially more attractive compounds such as prey extracts with the present method and analyzing surface, underwater and acoustic responses would provide further insights on odontocete feeding behavior. It would also provide valuable clues to studies on the anatomical structures involved in their chemosenses.


Asunto(s)
Delfín Mular , Ballena de Aleta , Calderón , Animales , Conducta Alimentaria/fisiología , Olfato
5.
Ecol Evol ; 10(18): 9968-9980, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005357

RESUMEN

Pest regulation by natural enemies has a strong potential to reduce the use of synthetic pesticides in agroecosystems. However, the effective role of predation as an ecosystem service remains largely speculative, especially with minute organisms such as mites.Predatory mites are natural enemies for ectoparasites in livestock farms. We tested for an ecosystem level control of the poultry pest Dermanyssus gallinae by other mites naturally present in manure in poultry farms and investigated differences among farming practices (conventional, free-range, and organic).We used a multiscale approach involving (a) in vitro behavioral predation experiments, (b) arthropod inventories in henhouses with airborne DNA, and (c) a statistical model of covariations in mite abundances comparing farming practices.Behavioral experiments revealed that three mites are prone to feed on D. gallinae. Accordingly, we observed covariations between the pest and these three taxa only, in airborne DNA at the henhouse level, and in mites sampled from manure. In most situations, covariations in abundances were high in magnitude and their sign was positive.Predation on a pest happens naturally in livestock farms due to predatory mites. However, the complex dynamics of mite trophic network prevents the emergence of a consistent assemblage-level signal of predation. Based on these results, we suggest perspectives for mite-based pest control and warn against any possible disruption of ignored services through the application of veterinary drugs or pesticides.

6.
Ecology ; 101(1): e02912, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31605622

RESUMEN

Climate is one of the main factors driving species distributions and global biodiversity patterns. Obtaining accurate predictions of species' range shifts in response to ongoing climate change has thus become a key issue in ecology and conservation. Correlative species distribution models (cSDMs) have become a prominent tool to this aim in the last decade and have demonstrated good predictive abilities with current conditions, irrespective of the studied taxon. However, cSDMs rely on statistical association between species' presence and environmental conditions and have rarely been challenged on their actual capacity to reflect causal relationships between species and climate. In this study, we question whether cSDMs can accurately identify if climate and species distributions are causally linked, a prerequisite for accurate prediction of range shift in relation to climate change. We compared the performance of cSDMs in predicting the distributions of 132 European terrestrial species, chosen randomly within five taxonomic groups (three vertebrate groups and two plant groups), and of 1,320 virtual species whose distribution is causally fully independent from climate. We found that (1) for real species, the performance of cSDMs varied principally with range size, rather than with taxonomic groups and (2) cSDMs did not predict the distributions of real species with a greater accuracy than the virtual ones. Our results unambiguously show that the high predictive power of cSDMs can be driven by spatial autocorrelation in climatic and distributional data and does not necessarily reflect causal relationships between climate and species distributions. Thus, high predictive performance of cSDMs does not ensure that they accurately depict the role of climate in shaping species distributions. Our findings therefore call for strong caution when using cSDMs to provide predictions on future range shifts in response to climate change.


Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Plantas , Análisis Espacial
7.
PLoS One ; 14(2): e0212515, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30807595

RESUMEN

Baleen whales face the challenge of finding patchily distributed food in the open ocean. Their relatively well-developed olfactory structures suggest that they could identify the specific odours given off by planktonic prey such as krill aggregations. Like other marine predators, they may also detect dimethyl sulfide (DMS), a chemical released in areas of high marine productivity. However, dedicated behavioural studies still have to be conducted in baleen whales in order to confirm the involvement of chemoreception in their feeding ecology. We implemented 56 behavioural response experiments in humpback whales using two food-related chemical stimuli, krill extract and DMS, as well as their respective controls (orange clay and vegetable oil) in their breeding (Madagascar) and feeding grounds (Iceland and Antarctic Peninsula). The whales approached the stimulus area and stayed longer in the trial zone during krill extract trials compared to control trials, suggesting that they were attracted to the chemical source and spent time exploring its surroundings, probably in search of prey. This response was observed in Iceland, and to a lesser extend in Madagascar, but not in Antarctica. Surface behaviours indicative of sensory exploration, such as diving under the stimulus area and stopping navigation, were also observed more often during krill extract trials than during control trials. Exposure to DMS did not elicit such exploration behaviours in any of the study areas. However, acoustic analyses suggest that DMS and krill extract both modified the whales' acoustic activity in Madagascar. Altogether, these results provide the first behavioural evidence that baleen whales actually perceive prey-derived chemical cues over distances of several hundred metres. Chemoreception, especially olfaction, could thus be used for locating prey aggregations and for navigation at sea, as it has been shown in other marine predators including seabirds.


Asunto(s)
Conducta Alimentaria/fisiología , Yubarta/fisiología , Algoritmos , Animales , Regiones Antárticas , Aves , Células Quimiorreceptoras/fisiología , Señales (Psicología) , Ecosistema , Euphausiacea , Alimentos , Cadena Alimentaria , Yubarta/psicología , Islandia , Madagascar , Modelos Biológicos , Odorantes , Conducta Predatoria/fisiología , Frecuencia Respiratoria/fisiología , Olfato/fisiología , Sulfuros , Vocalización Animal/fisiología
8.
Oecologia ; 185(4): 737-748, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29058124

RESUMEN

Global changes are modifying the structure of species assemblages, but the generality of resulting diversity patterns and of their drivers is poorly understood. Any such changes can be detected and explained by comparing temporal trends in taxonomic and functional diversity over broad spatial extents. In this study, we addressed three complementary questions: How did bird taxonomic and functional diversity change over the past 40 years in the conterminous United States? Are these trends non-linear? Can temporal variations in functional diversity be explained by broad-scale changes in climate and vegetation productivity? We quantified changes in taxonomic and functional diversity for 807 bird assemblages over the past four decades (1970-2011) considering a suite of 16 ecological traits for 435 species. We found increases in local bird species richness and taxonomic equitability that plateaued in the early 2000's while total abundance declined over the whole period. Functional richness, the total range of traits in an assemblage, increased due to the rising prevalence of species with atypical life-history strategies and under-represented habitat or trophic preferences. However, these species did not trigger major changes in the functional composition of bird assemblages. Inter-annual variations in climate and primary productivity explained the richness of bird life-history traits in local assemblages, suggesting that these traits are influenced by broad-scale environmental factors, while others respond more to more local drivers. Our results highlight that a comparative analysis of the multiple facets of functional diversity can raise novel insights on processes underlying temporal trends in biodiversity.


Asunto(s)
Biodiversidad , Aves/clasificación , Aves/fisiología , Animales , Clima , Factores de Tiempo , Estados Unidos
9.
Oecologia ; 182(2): 529-37, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27312262

RESUMEN

Species assemblages are shaped by local and continental-scale processes that are seldom investigated together, due to the lack of surveys along independent gradients of latitude and habitat types. Our study investigated changes in the effects of forest composition and structure on bat and bird diversity across Europe. We compared the taxonomic and functional diversity of bat and bird assemblages in 209 mature forest plots spread along gradients of forest composition and vertical structure, replicated in 6 regions spanning from the Mediterranean to the boreal biomes. Species richness and functional evenness of both bat and bird communities were affected by the interactions between latitude and forest composition and structure. Bat and bird species richness increased with broadleaved tree cover in temperate and especially in boreal regions but not in the Mediterranean where they increased with conifer abundance. Bat species richness was lower in forests with smaller trees and denser understorey only in northern regions. Bird species richness was not affected by forest structure. Bird functional evenness increased in younger and denser forests. Bat functional evenness was also influenced by interactions between latitude and understorey structure, increasing in temperate forests but decreasing in the Mediterranean. Covariation between bat and bird abundances also shifted across Europe, from negative in southern forests to positive in northern forests. Our results suggest that community assembly processes in bats and birds of European forests are predominantly driven by abundance and accessibility of feeding resources, i.e., insect prey, and their changes across both forest types and latitudes.


Asunto(s)
Quirópteros , Árboles , Animales , Biodiversidad , Aves , Ecosistema , Bosques
10.
Ecol Lett ; 17(7): 811-20, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24754339

RESUMEN

The extent to which species' ecological and phylogenetic relatedness shape their co-occurrence patterns at large spatial scales remains poorly understood. By quantifying phylogenetic assemblage structure within geographic ranges of >8000 bird species, we show that global co-occurrence patterns are linked - after accounting for regional effects - to key ecological traits reflecting diet, mobility, body size and climatic preference. We found that co-occurrences of carnivorous, migratory and cold-climate species are phylogenetically clustered, whereas nectarivores, herbivores, frugivores and invertebrate eaters tend to be more phylogenetically overdispersed. Preference for open or forested habitats appeared to be independent from the level of phylogenetic clustering. Our results advocate for an extension of the tropical niche conservatism hypothesis to incorporate ecological and life-history traits beyond the climatic niche. They further offer a novel species-oriented perspective on how biogeographic and evolutionary legacies interact with ecological traits to shape global patterns of species coexistence in birds.


Asunto(s)
Aves/clasificación , Aves/fisiología , Modelos Biológicos , Filogenia , Animales , Clima , Ecosistema , Fenómenos de Retorno al Lugar Habitual
11.
Ecology ; 95(1): 78-87, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24649648

RESUMEN

Untangling the relative influences of environmental filtering and biotic interactions on species coexistence at various spatial scales is a long-held issue in community ecology. Separating these processes is especially important to understand the influences of introduced exotic species on the composition of native communities. For this aim, we investigated coexistence patterns in New Zealand exotic and native birds along multiple-scale habitat gradients. We built a Bayesian hierarchical model, contrasting the abundance variations of 10 native and 11 exotic species in 501 point counts spread along landscape and local-scale gradients of forest structure and composition. Although native and exotic species both occurred in a wide range of habitats, they were separated by landscape-level variables. Exotic species were most abundant in exotic conifer plantations embedded in farmland matrices, while native birds predominated in areas dominated by continuous native forest. In exotic plantation forests, and to a lesser extent in native forests, locally co-occurring exotic and native species were segregated along a gradient of vegetation height. These results support the prediction that exotic and native bird species are segregated along gradients related to anthropogenic disturbance and habitat availability. In addition, native and exotic species overlapped little in a multivariate functional space based on 10 life history traits associated with habitat selection. Hence, habitat segregation patterns were probably mediated more by environmental filtering processes than by competition at landscape and local scales.


Asunto(s)
Aves/clasificación , Ecosistema , Árboles , Animales , Aves/fisiología , Demografía , Especies Introducidas , Nueva Zelanda
12.
Oecologia ; 172(2): 563-74, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23080303

RESUMEN

Quantifying the impact of land-use changes on biodiversity is a major challenge in conservation ecology. Static spatial relationships between bird communities and agricultural landscapes have been extensively studied. Yet, their ability to mirror the effects of temporal land-use dynamics remains to be demonstrated. Here, we test whether such space-for-time substitution approaches are relevant for explaining temporal variations in farmland bird communities. We surveyed 256 bird communities in an agricultural landscape in southwest France at the same locations in 1982 and 2007, and quantified the same seven landscape descriptors for each period. We compared the effects of spatial and temporal landscape changes over this 25-year period on bird species distributions and three community-level metrics: species richness and two community indices reflecting birds' specialisation regarding local vegetation structure (local CSI) and landscape composition (landscape CSI). Landscape heterogeneity decreased between 1982 and 2007 and crop area increased sharply at the expense of grassland as a result of agricultural intensification. We found that the correlations between temporal changes in bird distributions or community metrics and landscape components were less consistent than their spatial relationships in each year. This result advocates caution when using a space-for-time substitution approach to assess the effects of landscape changes on biodiversity. Additionally, community metrics showed contrasted responses to landscape changes. Species richness and local CSI for each period were negatively related to the area of crops and positively related to landscape heterogeneity. Conversely, the landscape CSI was positively related to the area of crop and negatively to landscape heterogeneity. To understand the ecological processes linked to changes in farm landscapes, our study underlines the need to develop long-term studies with bird and habitat data collected during several periods, and particularly to consider multiple community indices in monitoring change.


Asunto(s)
Aves/fisiología , Dinámica Poblacional , Agricultura , Animales , Biodiversidad , Productos Agrícolas , Ecosistema , Francia , Modelos Biológicos , Análisis Espacio-Temporal
13.
PLoS One ; 7(3): e32819, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22427891

RESUMEN

Predicting species' responses to the combined effects of habitat and climate changes has become a major challenge in ecology and conservation biology. However, the effects of climatic and habitat gradients on species distributions have generally been considered separately. Here, we explore the relationships between the habitat and thermal dimensions of the ecological niche in European common birds. Using data from the French Breeding Bird Survey, a large-scale bird monitoring program, we correlated the habitat and thermal positions and breadths of 74 bird species, controlling for life history traits and phylogeny. We found that cold climate species tend to have niche positions in closed habitats, as expected by the conjunction of the biogeographic history of birds' habitats, and their current continent-scale gradients. We also report a positive correlation between thermal and habitat niche breadths, a pattern consistent with macroecological predictions concerning the processes shaping species' distributions. Our results suggest that the relationships between the climatic and habitat components of the niche have to be taken into account to understand and predict changes in species' distributions.


Asunto(s)
Aves/fisiología , Clima , Demografía , Ecosistema , Animales , Ecología , Europa (Continente) , Análisis de los Mínimos Cuadrados , Modelos Biológicos , Filogenia , Especificidad de la Especie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...